mathe-lerntipps.de  ⇒ Mathe Abitur  ⇒ Kurvendiskussion  ⇒ Polstellen

Gefällt Dir unsere Seite?

Gib einfach eine Bewertung ab.

4.0 / 5


von insgesamt0

Polstellen

Eine Polstelle - auch nur als Pol bezeichnet - ist eine nicht hebbare Definitionslücke, in deren Umgebung die Funktionswerte gegen (minus) unendlich laufen.

Polstelle

Beim vorliegenden Graph ist eine Polstelle bei x = 1 zu erkennen. Vor und nach der Polstelle nähert sich der Graph einer imaginären Geraden an, die parallel zur y-Achse ist. Solche Polstellen sind häufig bei gebrochenrationalen Funktionen zu beobachten.


Unser Lernvideo zu : Polstellen



Um eine gebrochenrationale Funktion auf Polstellen zu untersuchen, wird zunächst der Nenner auf Nullstellen geprüft. Liegen dort welche vor, ist zusätzlich zu ermitteln, ob diese auch Nullstellen des Zählers sind. Ist die Nullstelle des Nenners nicht auch eine Nullstelle des Zählers, so liegt eine Polstelle vor.

Beispiel 1

1. Schritt
Nenner auf Nullstellen prüfen

x - 2 = 0 | +2
x = 2  

2. Schritt
x-Wert in Zähler einsetzen

Da der Zähler hier unabhängig von x ist, entfällt dieser Schritt.

→ Es liegt eine Polstelle bei x = 2 vor.

Beispiel 2

1. Schritt
Nenner auf Nullstellen prüfen

(x + 1)2 = 0   | √
x + 1 = 0   | -1
x = -1    

2. Schritt
x-Wert in Zähler einsetzen

x + 1 = (-1) + 1 = 0

Da für den selben x-Wert auch im Zähler eine Nullstelle vorliegt, ist zu prüfen, ob die Definitionslücke hebbar ist. Wir faktorisieren hierfür unseren Term.

Setzen wir nun x = -1 ein, wird der Nenner gleich Null ohne dass der Zähler ebenfalls eine Nullstelle aufweist. Es handelt sich somit nicht um eine hebbare Definitionslücke, sondern eine Polstelle.


Hier wird die Nullstellenberechnung für Funktionen 1. bis 3. Grades gezeigt.
Hier wird das Substitutions- sowie Näherungsverfahren für die Nullstellenberechnung erklärt.
Hier wird das Verfahren zur Bestimmung von Extremwerten erläutert.
Hier wird erklärt, wie man das Symmetrieverhalten einer Funktion bestimmt.
Hier wird die Bestimmung der Wendepunkte sowie der dazugehörigen Wendetangente erläutert.

Haben Sie Fragen zu diesem Thema

Alle Themen aus Kurvendiskussion
Wir nutzen Google Produkte die Cookies setzen, mit der Nutzung der Seite stimmen Sie zu. mehr Infos