mathe-lerntipps.de  ⇒ Mathe Klasse 10  ⇒ Trigonometrie  ⇒ Periodische Funktion

Gefällt Dir unsere Seite?

Gib einfach eine Bewertung ab.

4.3 / 5


von insgesamt2

Periodische Funktion

Die bekanntesten periodischen Funktionen sind die trigonometrischen Funktionen. Die Sinusfunktion und die Kosinusfunktion sind periodisch mit der Periode 2π.

 

Periode und Frequenz

Eine Funktion f(x) heißt periodisch mit Periode p, wenn f(x + p) = f(x) für alle x ∈ R gilt

(dabei sei p eine feste positive Zahl). Dies bedeutet, daß die vertikale Verschiebung um p die Funktion in sich überführt. Typische Beispiele periodischer Funktionen sind Sinus und Cosinus (beide mit Periode 2π).

Statt der Periode p betrachtet man oft den Kehrwert 1/p und nennt ihn die Frequenz (also die Häufigkeit der Wiederholung pro Zeiteinheit”): Ist f(t) eine Funktion mit der Periode 1/3 , gilt also f(t + 1/3 ) = f(t) für alle t, so ist die Frequenz 3: alles wiederholt sich 3 mal pro Zeiteinheit. 

 

Die Schwingung f(t) = sin t schwingt pro 2π Sekunden einmal, sie hat also die Frequenz 1/2π [sec]-1 (und die Periode 2π). Die Standard-Maßeinheit für eine Zeitdauer ist die Sekunde, entsprechend ist die Standard-Maßeinheit für Frequenz die Anzahl pro Sekunde, also 1 sec ,auch Hz genannt (gesprochen: Hertz)

 

 


Unser Lernvideo zu : Periodische Funktion


Beispiel 

 

edcecedc

 

 

Merke: Ist F die Frequenz (also die Anzahl der Wiederholungen pro Sekunde) und p die Periode (also die Dauer in Sekunden), so gilt  

F= 1/p    und   p=1/F

 

Ist die x-Achse eine Zeitachse, so nennt man die Periode auch Periodendauer (und ihren Kehrwert Frequenz), ist die x-Achse dagegen eine räumliche Achse, so nennt man die Periode Wellenlänge (und den Kehrwert Wellenzahl).

Beispiel: Eine Woche hat 7 Tage, jeder Tag 86 400 Sekunden, also hat eine Woche 602 000 Sekunden, die Frequenz ist also 3, 3 · 10-6 Hz.

 


Streckungen und Stauchungen

Hat f die Periode p, so sind für beliebige Konstanten c > 0 und d die Funktionen df (ct) periodisch, und zwar mit Periode p/c . (Der Faktor d verändert die Amplitude!)

 

Funktion zeichnen und erkennen

f(x)= a*sin ( b*(x-c)+d   → für Sinusfunktion

f(x)= a*cos( b*(x-c)+d   →für Cosinusfunktion

f(x)= a*tan ( b*(x-c)+d   →für Tangensfunktion

 

Bedeutung der Buchstaben

Die Amplitude a bewirkt eine Streckung

Der Faktor b bewirkt eine Änderung der Periodenlänge, welche durch die Formel p=2π/b berechnet wird. 

Der Faktor c bewirkt eine Phasenverschiebung in x-Richtung. Wenn c>0 ist, dann verschiebt sich der Graph nach rechts, bei c<0 nach links

Der Faktor d bewirkt eine Verschiebung parallel der y-Achse um d. Das bedeutet, dass jedem Funktionswert die Zahl d dazu addiert wird. 

 

 

Anhand dieser Merkmale kann man periodische Funktionen zeichnen und auch erkennen! 


Nächstes Thema
Hier erklären wir die Grundbegriffe der Trigonometrie und erläutern was Sinus, Kosinus und Tangens überhaupt ist.
Es sind Seiten eines Dreiecks unbekannt? Wir erklären hier wie man diese berechnen kann.
Auch bei unbekannten Winkeln kann uns die Trigonometrie weiterhelfen. Wir erklären hier wie es geht.
Textaufgaben sind besonders gut um das gerlernte Wissen anzuwenden. Hier findet ihr zwei Aufgaben mit kompletter Lösung.
Hier wird der Unterschied zwischen Grad- und Bogenmaß sowie deren Umrechnung erläutert.

Haben Sie Fragen zu diesem Thema

Alle Themen aus Trigonometrie
Wir nutzen Google Produkte die Cookies setzen, mit der Nutzung der Seite stimmen Sie zu. mehr Infos