mathe-lerntipps.de  ⇒ Mathe Klasse 6  ⇒ Rationale Zahlen  ⇒ Division Ganzer Zahlen

Gefällt Dir unsere Seite?

Gib einfach eine Bewertung ab.

3.0 / 5


von insgesamt4

Division Ganzer Zahlen

Die Division mit der Zahlenmenge der ganzen Zahlen unterschiedet sich etwas von der der natürlichen Zahlen. Denn nun können auch negative Zahlen hinzukommen, die das Ergebnis stark beeinflussen.

Wenn ihr euch nochmal die Division der natürlichen Zahlen ansehen wollt, könnt ihr dieses gern auf dieser Homepage machen.

Bei der Zahlenmenge der ganzen Zahlen, gehören, wie ihr wisst, auch die negativen Zahlen dazu. Bei der Division ist es egal, ob der Dividend oder der Divisor negativ ist, es gelten bei der Berechnung ähnliche Regeln wie bei der Multiplikation:

Minus : Minus = Plus

Plus : Plus = Plus

Plus : Minus = Minus

Minus : Plus = Minus

Diese Regeln solltet ihr euch einprägen, die braucht ihr immer wieder!


Unser Lernvideo zu : Division Ganzer Zahlen


Division mit negativen Zahlen

Bei der Division mit negativen Zahlen gehen wir wie folgt vor:

1. Wir dividieren die Beträge
2. Wir beachten die Vorzeichen der einzelnen Beträge nach den obigen Regeln

Beispiel 1:

Berechnen von 9 : (-3)

1. 9 : 3 =3
2. Wir haben folgende Vorzeichen: Plus : Minus = Minus

Ergebnis: 9 • (-3) = -3

Zunächst berechnen wir wie gewohnt die Beträge der beiden Zahlen und dann achten wir darauf, welche Vorzeichen diese Zahlen haben und fügen das richtige Vorzeichen hinzu.

Beispiel 2:

Berechnen von (-24) : 6

1. 24 : 6 = 4
2. Wir haben folgende Vorzeichen: Minus : Plus = Minus

Ergebnis: (-24) : 6 = -4

Auch hier berechnen wir als erstes die Beträge der Zahlen und achten dann auf die gegebenen Vorzeichen und schreiben nach den Regeln das richtige dazu.

Beispiel 3:

Berechnen von (-40) • (-4)

1. 40 : 4 = 10
2. Wir haben folgende Vorzeichen: Minus : Minus = Plus

Ergebnis: (-40) • (-4) = +10

Wie gehabt berechnen wir zunächst die Beträge und schauen uns danach die Vorzeichen an. Das Wichtige ist hier, dass wir trotz zwei negativer Faktoren ein positives Ergebnis erhalten!

 


Zusammenfassung

Das Dividieren von ganzen Zahlen zielt besonders auf die negativen Vorzeichen ab. Die Rechnung bleibt dieselbe, nur gibt die Anzahl der negativen Faktoren vor, ob der Quotient negativ oder positiv ausfällt. Dabei ist vor allem zu beachten: Minus durch Minus ergibt Plus und Plus durch Minus ergibt Minus. Abgesehen von dieser Neuerung, sind alle bisherigen Regeln beibehalten, so dass man auch dieses Feld schnell begreifen kann und sicher an Lösungen herangehen kann.


Hier geben wir einen Überblick über die natürlichen, die ganzen, die rationalen, die irrationalen und die reellen Zahlen.
Erklärung der Addition von Ganzen Zahlen an Beispielen
Erklärung der Subtraktion von Ganzen Zahlen an Beispielen

Haben Sie Fragen zu diesem Thema

Alle Themen aus Rationale Zahlen
Wir nutzen Google Produkte die Cookies setzen, mit der Nutzung der Seite stimmen Sie zu. mehr Infos