mathe-lerntipps.de  ⇒ Mathe Abitur  ⇒ Matrizenrechnung  ⇒ Zeilenstufenform

Gefällt Dir unsere Seite?

Gib einfach eine Bewertung ab.

4.0 / 5


von insgesamt3

Zeilenstufenform

Die Zeilenstufenform wird auch einfach Stufenform oder Treppenform genannt und ist eine von vielen Formen, die Matrizen annehmen können. Im Grunde kann jede Matrix in die Zeilenstufenform gebracht werden. Eine vereinfachte Definition lautet:

  • Von oben nach unten gesehen müssen in jeder Zeile der Matrix am Anfang mehr Nullen stehen als in der vorherigen Zeile.

Hierdurch entstehen die namensgebenden Stufen, die auch im folgenden Beispiel zu sehen sind:

Beispiel 1

 

Eine Matrix kann über verschiedene Zeilenstufenformen verfügen, oftmals gibt es also mehrere Lösungen. Die Anzahl der Nullzeilen ist in jeder Zeilenstufenform einer Matrix jedoch gleich!

Die Dreiecksform ist eine spezielle Form der Zeilenstufenform.



Umformung anhand eines Beispiels


Um eine beliebige Matrix in die Zeilenstufenform zu bringen, bedient man sich des Gauß-Algoritmus. Hierbei darf man:

  • Zeilen addieren oder subtrahieren
  • Zeilen mit einer Zahl multiplizieren oder durch eine Zahl dividieren
  • Zeilen vertauschen
     

Aufgabe

Folgende Matrix A soll in die Zeilenstufenform gebracht werden.

Beispiel 2a

Mit Blick auf die rot markierte 2 ziehen wir die erste Zeile zweimal von der vierten Zeile ab, um an der besagten Stelle eine Null zu erhalten.

Beispiel 2b

Betrachten wir nun die vier Elemente im roten Quadrat. Es bieten sich an, hier eine der beiden Zeilen zu der anderen zu addieren, um zwei weitere Elemente gleich Null zu erhalten. Wir addieren also die dritte Zeile zur vierten Zeile.

Beispiel 2c

Laut der Definition für die Zeilenstufenform müssen von oben nach unten gesehen in jeder Zeile am Anfang mehr Nullen stehen als in der jeweils vorherigen. Wie wir anhand der vier Elemente im roten Quadrat sehen, bietet es sich hier an, die zweite und dritte Zeile zu tauschen.

Beispiel 2d

Geschafft! Uns liegt nun die gewünschte Zeilenstufenform vor, wie anhand der roten Treppe zu erkennen ist. In jeder Zeile befinden sich vorne mehr Nullen als in der jeweiligen Zeile zuvor.

Beispiel 2e


Wir erhalten also folgende Matrix als eine Zeilenstufenform von A:

Beispiel 2f


Was versteht man unter einer Matrix
Wie kann man zwei Matrizen addieren oder voneinander subtrahieren?
Wie kann ich eine Matrizen mit einem Skalar multiplizieren?
Wie werden zwei Matrizen miteinander malgenommen?
Wie transponiert man eine Matrix?

Haben Sie Fragen zu diesem Thema

Alle Themen aus Matrizenrechnung
Wir nutzen Google Produkte die Cookies setzen, mit der Nutzung der Seite stimmen Sie zu. mehr Infos