mathe-lerntipps.de  ⇒ Mathe Klasse 7  ⇒ Lineare Funktionen  ⇒ Bestimmen der Funktionsvorschrift aus zwei Punkten

Gefällt Dir unsere Seite?

Gib einfach eine Bewertung ab.

4.5 / 5


von insgesamt0

Bestimmen der Funktionsvorschrift aus zwei Punkten

Wie man mit nur zwei gegebenen Pukten die Funktionsvorschrift einer linearen Funktion bestimmt erklären wir hier.

Mit zwei gegebenen Pukten die Funktionsvorschrift einer linearen Funktion bestimmen

Alles was benötigt wird um die Funktionsvorschrift einer linearen Funktion zu bestimmen, haben wir in den vorhergehenden Artikeln bereits erläutert. Lediglich die rechnerische Methode zur Bestimmung des y-Achsenabschnitts ist neu.

Gegeben sind die Punkte:

Beispielpunkte A und B

Wir zeichnen die beiden Punkte in ein Koordinatensystem ein. Dies dient dem besseren Verständnis und muss nicht unbedingt getan werden.

 

Koordinatensystem mit den Punkten A und B

 

Diese beiden Punkte sollen also mit einer linearen Funktion miteinander verbunden werden.

Wir bestimmen nun zunächst die Steigung a. Dazu zeichnen ein Steigungsdreieck und bestimmen Δx und Δy.

 

Steigungsdreieck

 

Für Δy subtrahieren wir die beiden y-Koordinaten: 

Bestimmung delta y

Für Δy subtrahieren wir die x-Koordinaten:

Bestimmung delta x

Jetzt teilen wir Δy durch Δx und erhalten die Steigung a:

Bestimmung der Steigung

Jetzt fehlt uns nur noch der y-Achsenabschnitt. Diesen können wir grafisch bestimmen indem wir die Beiden Punkte miteinander verbinden und den Schnittpunkt mit der y-Achse ablesen oder rechnerisch indem wir eine der folgenden Formeln anwenden:

Bestimmung des y-Achsenabschnitts

Wir setzen die Werte in die erste Formel ein:

Bestimmung von b Mothode 1

Natürlich hätten wir auch die zweite Formel nehmen können:

Bestimmung von b Methode 2

In beiden Fällen bekommen wir natürlich dasselbe Ergebnis.
Die Funktionsvorschrift lautet damit:

Funktionsvorschrift

Welche der beiden Schreibweisen man wählt ist Geschmackssache. Die mathematische Bedeutung ist in beiden Fällen identisch.

 

Alternatives Vorgehen: y-Achsenabschnitt b grafisch ablesen

Wir hätten den y-Achsenabschnitt auch grafisch ablesen können. Dabei wäre das Ergebnis aber nicht ganz so genau, wie bei dem rechnerischen Vorgehen. Um den y-Achsenabschnitt ablesen zu können müssen wir zunächst die beiden Punkte A und B verbinden.

 

y-Achsenabschnitt grafisch ablesen

 

Jetzt können wir den Schnittpunkt mit der y-Achse ablesen. Allerdings ist dies schwierig. Wir müssen den Schnittpunkt ungefähr Schätzen. Vermutlich würden wir noch sehen, dass der Schnittpunkt etwas über -0,5 liegt. Vielleicht würden wir also -0,4 schätzen.

Dies ist nicht weit weg vom genauen Wert, dennoch merken wir, dass diese Methode nur benutzt werden kann, wenn wir den Wert nicht exakt benötigen. Die Methode ist dennoch gut um das rechnerische Ergebnis zu überprüfen. 



In diesem Artikel erklären wir was man sich überhaupt untern einer linearen Funktion vorstellen kann.
Steigung und y-Achsenabschnitt sind zwei wichtige Begriffe wenn es um lineare Funktionen geht. Was sie bedeuten erklären wir hier.
Wie man lineare Funktionen am besten zeichnet erklären wir hier.
Wie man von einer gezeichneten Funktion die Steigung ablesen kann und die Steigung berechnen kann.
Im Alltag begegnen uns viele lineare Funktionen. Sie zu erkennen erleichtert uns viele Situationen.

Haben Sie Fragen zu diesem Thema

Alle Themen aus Lineare Funktionen
Wir nutzen Google Produkte die Cookies setzen, mit der Nutzung der Seite stimmen Sie zu. mehr Infos